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Filament Preserving Model (FPM) Segmentation
Applied to SAR Sea-Ice Imagery

Qiyao Yu and David A. Clausi, Senior Member, IEEE

Abstract—Modeling spatial context constraints using a Markov
random field (MRF) has been widely used in the segmentation of
noisy images. Its applicability to synthetic aperture radar (SAR)
sea-ice segmentation has also been demonstrated recently. How-
ever, most existing MRF models are not capable of preserving
filaments, specifically leads and ridges for SAR sea ice, which
are valuable for ship navigation applications and necessary for
identifying certain ice types. In this paper, a new statistical context
model is proposed that, within the same scene, can simultane-
ously preserve narrow elongated features while producing similar
smooth segmentation results comparable to typical MRF-based
approaches. Tested on one synthetic image and two SAR sea-ice
scenes, this filament preserving model substantially improves clas-
sification accuracies when compared to standard Gaussian mix-
ture and MRF-based segmentation algorithms.

Index Terms—Adaptive model, egg code, lead, Markov random
field (MRF), ridge, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been intensively
used in monitoring and understanding of sea ice during

the past decade. Important applications of SAR sea ice analysis
include both scientific and operational activities such as climate
research and ship navigation. The interpretation of SAR sea ice
data currently in operation at many ice services [e.g., the Cana-
dian Ice Service (CIS)] is in the form of a manually produced
ice chart. In an ice chart, each outlined region corresponds to a
visually homogeneous area in the SAR image and is associated
with an egg code defined by the World Meteorology Organi-
zation [1]. The egg code provides information about the type,
concentration, and floe size of the ice components in the region.
Such an interpretation is limited in throughput, has human
bias, and does not classify at pixel level resolution. Analysis
methods that are as fully automated as possible with minimum
user interactions are thus desired. As a fundamental step of
the analysis process, a robust and accurate computer-assisted
image segmentation method must be designed. However, SAR
sea ice imagery is extremely complex and highly variable due to
numerous environmental factors, imaging parameters, and the
notorious speckle noise. As a result, to design an automated
segmentation technique sufficiently effective and robust for
operational use is very difficult.
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Previous research [2]–[5] has demonstrated some degree of
success using tone (gray level) and texture features in a super-
vised manner (i.e., class distribution known a priori by training)
on images of sea ice of limited types, locations, and seasons.
Some more recent papers choose unsupervised segmentation
techniques as they can theoretically adapt to the varying prop-
erty of backscatter characteristics of SAR sea ice imagery more
effectively. Soh and Tsatsoulis [6] developed a dynamic thresh-
olding and spatial clustering algorithm applied to the SAR sea
ice tone feature. Samadani [7] assumed that the tone of each ice
class in SAR imagery follows a Gamma distribution, and used
a finite Gamma mixture model for the clustering. Clausi and
Yue [8] also adopted a clustering technique but applied it to the
texture features. In [9], a complete interpretation system named
ARKTOS was designed with the watershed and region growing
techniques chosen for the segmentation task. Karvonen [10]
developed a system based on a pulse-coupled neural network.
Deng and Clausi [11] implemented a Markov random field
(MRF) model to account for the spatial relationship among
pixels for producing segmentation results less sensitive to the
SAR speckle noise.

The MRF-based approaches are attractive, as they allow to
take into account the nature of speckle noise in a statisti-
cally sound manner and at the same time provide an efficient
regularization for the general ill-posed segmentation problem.
Moreover, it is very convenient for such global approaches to
incorporate user provided information such as the egg code,
which could be beneficial to the reliability of the system.
Currently, such a semiautomated analysis process seems more
robust and hence more practical than fully automated ones.

Therefore, this paper follows the MRF-based approaches, us-
ing a statistical model to incorporate a spatial context constraint
and aiming at segmenting regions into component ice types.
However, this paper differs from others in that it focuses on
simultaneously preserving filaments (narrow linear features),
such as ridges and leads. Ridges are irregular bright filaments
on ice floes corresponding to pressure deformation features, and
leads are generally dark filaments corresponding to cracks that
ships can navigate through. They are important for applications
such as ship routing, the safety of offshore structures, and
regional climate models. For example, regional climate models
are especially sensitive to total ice concentration estimates
due to the climatic difference in thermodynamic fluxes under
ice versus no ice conditions in cold regions. Moreover, the
existence of ridges or leads is also crucial for identifying certain
ice types such as gray and gray–white ice. Existing MRF-based
approaches generally discard such filament features since the
models are isotropic and cannot describe narrow elongated
features. By this motivation, we have designed our model to
be adaptive to the existence of filaments and to be able to
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capture filament features without compromising the strength on
suppressing noisy configurations in other parts of the image.

This paper is unique compared to direct ridge and lead
extraction methods. For example in [12], ridges or leads are
extracted by a line detector combined with a thresholding op-
eration. Our goal, however, is the segmentation of different ice
types with the filaments preserved at the same time. Although
the output of the proposed method is not a map of ridges and
leads, derivation of those ridges and leads from the output is
straightforward. To the best of the authors’ knowledge, such
an approach (region consistency and lead preservation in SAR
imagery) has not been previously considered.

Similar research also exists in fields other than SAR sea ice
image classification. There are some adaptive neighborhood
MRF methods [13], [14] in the literature that select the MRF
neighbors using external knowledge or by incorporating a local
degree of homogeneity. The proposed model in this paper is
unique since it is tailored to filaments and does not need any
external knowledge.

The organization of this paper is as follows. After a brief
review of MRF-based segmentation in Section II, the filament
preserving model (FPM) is introduced in Section III. Section IV
presents the experiments and discussions. Summary and future
work comprise Section V.

II. CLASSICAL MRF-BASED SEGMENTATION

The MRF provides a method to model the joint probability
distribution of the image sites in terms of the local spatial inter-
actions. It assumes that each site is independent of other sites
outside of its defined neighborhood given the configuration of
neighborhood sites. For any configuration x of the state space
T of random field X , its joint probability is defined by a Gibbs
distribution [15]

P (X = x) =
1
Z

exp {−E(x)} =
1
Z

exp

{
−

∑
c∈C

Vc(x)

}

(1)

where C is the set of cliques which are defined as the sets of
mutually neighboring sites, Vc(x) is the energy of configuration
x on clique c, E(x) is the total energy of configuration x, and
Z is the normalizing constant.

The MRF has been popular for image segmentation in model-
ing spatial context [11], [16]–[18] which, with the segmentation
task formulated as a maximum a posterior (MAP) problem
under the Bayesian framework in (2), corresponds to the prior
P (x) in the equation

arg max
x
P (x|y) = arg max

x
p(y|x)P (x). (2)

Here, y represents the observations and x represents the class
labels. A typical MRF spatial context model is the multilevel
logistic model (MLL) [16]. The MLL has only pair-site cliques
with energy defined as

Vc(xs, xt) =
{
β, if xs �= xt

0, otherwise
(3)

Fig. 1. Shape of ridge and valley in the main principle curvature direction.

where xs and xt are the class labels of the two neighboring sites
s and t, respectively, and β is a positive number. With such a
model, the prior P (x) is large if local neighborhood region is
dominated by one single class and small otherwise. Although
the MLL is efficient in suppressing noisy configurations, it
merges narrow elongated segments into surrounding classes
due to its deficiency in describing anisotropic behavior.

III. FILAMENT PRESERVING MODEL (FPM)

The new model is desired to be adaptive to the existence
of filaments. Since filaments are narrow and elongated, they
are expected to have a sharp ridge or valley shape (intensity
as height) in the main principle curvature direction (i.e., the
direction that has the shortest crossing path of the filament at
the specified site) as depicted in Fig. 1. Therefore, a new feature
measured as the curvature of the shape is introduced to provide
evidence for the existence of filaments, and is thus named
filament strength. Detailed extraction of filament strength is
found in Section III-A.

Let y(f) represents the filament strength vector on the image
lattice S, and y(f)

s the filament strength on site s ∈ S. Similarly,
y and ys denotes, respectively, the gray level on the image
lattice S and on site s ∈ S. Following the naive Bayes approach
[19], an assumption is made that ys depends only on xs, and
y
(f)
s depends only on xs and the neighborhood class labels xηs

,
where ηs is the neighborhood of site s. The MAP segmentation
in (2) then becomes

arg max
x

∏
s∈S

{
p(ys|xs)p

(
y(f)

s |xs,xηs

)}
P (x). (4)

Modeling p(y(f)
s |xs,xηs

) is difficult, as the configuration
space of s together with ηs has a high dimension. We thus
introduce a Boolean variable which indicates whether the site
belongs to a filament or not, and name it filament flag. Let x(f)

s

denote the filament flag for site s with x(f)
s = 0 corresponding

to nonfilament and x
(f)
s = 1 filament, and assume y

(f)
s to

be independently distributed given x(f)
s . Using the principle

of iterated conditional mode [20], the MAP segmentation is
approximated by performing iteratively at each lattice site s the
following:

arg max
xs

p(ys|xs)
∑
x
(f)
s

{
p

(
y(f)

s |x(f)
s

)
P

(
xs, x

(f)
s |x̂ηs

)}
(5)
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where x̂ηs
is the provisional estimate of the neighborhood

configuration xηs
. The probability P (xs, x

(f)
s |x̂ηs

) can be

further decomposed as P (x(f)
s |xs, x̂ηs

) · P (xs|x̂ηs
). To make

the model of P (xs|x̂ηs
) capable of describing anisotropic

behaviors with simple pair-site cliques, we include filament flag
into it and hence use P (xs|x(f)

s ,x(f)
ηs , x̂ηs

) instead, where x(f)
ηs

is the filament flags of ηs. For representation convenience, x̂ηs

is denoted by xηs
, and (5) becomes

arg max
xs

p(ys|xs)
∑
x
(f)
s

{
p

(
y(f)

s |x(f)
s

)

×P
(
x(f)

s |xs,xηs

)
P

(
xs|x(f)

s ,x(f)
ηs
,xηs

)}
. (6)

It should be noted that such an approximation of (4) using
(6) has caused the class label field to be non-Markov unless
P (x(f)

s |xs,xηs
) is defined to be either 0 or 1. We can also

include the filament flag as the unknowns to be estimated. That
is, the segmentation task is formulated as

arg max
xs,x

(f)
s

p(ys|xs)p
(
y(f)

s |x(f)
s

)

×P
(
x(f)

s |xs,xηs

)
P

(
xs|x(f)

s ,x(f)
ηs
,xηs

)
(7)

for each site s.
Equation (7) is the proposed objective function for the

segmentation task. Unlike the MLL-based approaches, it uses
two different context models for P (xs|x(f)

s = 0,x(f)
ηs ,xηs

)
and P (xs|x(f)

s = 1,x(f)
ηs ,xηs

), respectively, as shown later in
Section III-B. Of the two models, one favors large homoge-
neous regions and the other favors narrow elongated filaments.
In (7), the two terms p(y(f)

s |x(f)
s ) and P (x(f)

s |xs,xηs
) form the

posterior as the following:

P
(
x(f)

s |y(f)
s , xs,xηs

)
∝ p

(
y(f)

s |x(f)
s

)
P

(
x(f)

s |xs,xηs

)
.

(8)

Therefore, based on the evidence and the context of class labels,
the existence of filaments is inferred and determines in the
optimization whether the current site should use the model
favoring homogeneous regions or switch to the model favoring
filaments.

A. Feature Model

The feature models in (7) include those for p(ys|xs) and
p(y(f)

s |x(f)
s ). For ys, which is gray level, there is no necessary

difference in the modeling of p(ys|xs) than in the traditional
approaches [18]. A Gaussian distribution is assumed here.

For the filament strength y
(f)
s , the definition is based on

Haralick’s work on ridge detection [21]. In [21], the process
first finds for each site a direction having greatest magnitude of
second directional derivative, and then checks in that direction
whether or not a zero crossing of first directional derivative
has occurred. Those zero crossing sites correspond to the ridge
peaks or valley bottoms, and hence the ridge (valley) sites can
be located. In this paper, if a site s is a zero crossing site the
filament strength y(f)

s is defined as |y′′s(θs)|, where y′′s(θs) is

the second derivative in the main principle curvature direction
θs. In the model, p(y(f)

s |x(f)
s ) is assumed to be Gaussian.1

To reduce the influence of noise, a Gaussian smoothing is
performed on the original SAR image before computing the
derivatives.

B. Context Model

The model for P (xs|x(f)
s ,x(f)

ηs ,xηs
) consists of two different

components for filament and nonfilament labels.

1) Current site is nonfilament (x(f)
s = 0). The MLL model

in (3) is used, which favors the class label dominant in
the neighborhood. The equation is presented again here
as follows:

Vc

(
xs, xt, x

(f)
s = 0, x(f)

t

)
=

{
β, if xt �= xs

0, otherwise.
(9)

2) Current site is filament (x(f)
s = 1). The class label of cur-

rent site should be the same as that of filament neighbors
and different from that of nonfilament neighbors. The
clique energy is hence defined as

Vc

(
xs, xt, x

(f)
s = 1, x(f)

t

)

=



aβ, if x(f)

t = 1 and xt �= xs

aβ, if x(f)
t = 0 and Bs(xt, xs) = true

0, otherwise.

(10)

Here, β is a positive constant as in (3), and a is a
nonnegative real number. Also

Bs(xt, xs)={µxs
≤µxt

, y′′s(θs)<0} or {µxs
≥µxt

, y′′s(θs)>0}

where µx is the mean gray level of class x. In (10), the
formula penalizes two situations. In the first situation,
xt and xs both belong to a filament but have different
class labels. This is unlikely and should have a smaller
prior corresponding to a higher clique energy. In the
second situation, Bs(xt, xs) = true corresponds to two
possibilities. For the first, y′′s(θs) < 0 means that the
current site s belongs to a ridge and thus should be
brighter than neighboring nonfilament sites, while µxs

≤
µxt

gives a contradictory observation. This is again not a
desirable configuration and should be penalized. For the
other possibility of Bs(xt, xs) = true, a similar contra-
diction exists between y′′s(θs) > 0 (indicating a valley)
and µxs

≥ µxt
(indicating a nonvalley configuration) and

is also penalized.

With Vc(xs, xt, x
(f)
s , x

(f)
t ) defined, P (xs|x(f)

s ,x(f)
ηs ,xηs

) can

be computed as exp{−
∑

t∈ηs
Vc(xs, xt, x

(f)
s , x

(f)
t )}/Z, where

Z =
∑

xs
exp{−

∑
t∈ηs

Vc(xs, xt, x
(f)
s , x

(f)
t )} is a normaliz-

ing factor computed by summation of the numerator over the
configuration space of xs.

1For zero crossing sites that are nonfilament, y′′
s (θs) is mostly caused by

noise and is zero mean. Therefore, p(y
(f)
s |x(f)

s = 0) is in fact assumed to be
half-sided Gaussian.
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Fig. 2. Initial values of P (x
(f)
s = 1|xs,xηs), the conditional probabilities

of site s being a filament given the class labels of itself and its neighbors. The
central site is always black. Neighboring sites that have the same class label
as the central one (i.e., xt = xs, t ∈ ηs) are black as well; otherwise, they
are white.

P (x(f)
s |xs,xηs

) is modeled as in Fig. 2. In the figure, the cen-
tral site is always black. Neighboring sites that have the same
class label as the central one (i.e., xt = xs, t ∈ ηs) are black as
well;2 otherwise, they are white. P (x(f)

s = 1|xs,xηs
) should be

set to a large value if the site has limited number of black neigh-
bors in separate directions, and vice versa. Fig. 2 lists some
configurations, and the rest can be obtained by symmetry. In the
figure, P (x(f)

s = 1|xs,xηs
) has three different possible values

of L,M , andH , which denote low, medium, and high probabil-
ities, respectively. The first three patterns listed in Fig. 2 are the
three most occurring ones. Their probability values are crucial.
For the first configuration in Fig. 2, P (x(f)

s = 1|xs,xηs
) should

be as close to zero as possible to select the nonfilament model
to suppress noisy configurations, but on the other hand should
not be too small so that the filament model has the possibility
to be used to link broken filaments. Considering the small
population of broken filament sites compared to that of noise,
the value 0.001 is chosen. For the next two configurations in
Fig. 2, P (x(f)

s = 1|xs,xηs
) is set to be 0.5 as the central site

can equally be either noise or the end of a filament if there is
no other information favoring one over the other. Therefore, we

2The eight-neighbor system is used in this paper.

set L to be 0.001,M to be 0.5, andH to be 0.9. Such values are
only used initially. They are further refined by an expectation-
maximization (EM) technique during the optimization process,
as shown later in Section III-C. In fact, the initial values of
all other configurations except the first three have little effect
on the final result and can even be assigned random numbers
in [0 1].

C. Parameter Estimation

Parameters to be estimated include: the Gaussian parameters
for p(ys|xs), the Gaussian parameters for p(y(f)

s |x(f)
s ), the

conditional probabilities of P (x(f)
s |xs,xηs

), and a and β of the
context model.
1) P (ys|xs): The assumption of p(ys|xs) being Gaussian

means that the observation ys is a mixture of n Gaussian
functions, where n is the number of classes. The EM algorithm
[22] is typically used to determine the parameters for Gaussian
mixture.

Let Pi, µi, and σ2
i denote the prior, mean and variance for

class i, respectively, and wsi represents the probability of site
s belonging to class i given the observation data and current
estimate of all parameters.3 The EM algorithm iterates through
computing the E step

wsi =
{

1, if ∀j, p(ys|µi, σi)Pi ≥ p(ys|µj , σj)Pj

0, otherwise
(11)

and the M step

µi =

∑
s
wsiys∑

s
wsi

(12)

σ2
i =

∑
s
wsi(ys − µi)2∑

s
wsi

(13)

Pi =

∑
s
wsi∑

i

∑
s
wsi

. (14)

2) P (y(f)
s |x(f)

s ) and p(x(f)
s |xs,xηs

): Similar to p(ys|xs),
this is also a Gaussian mixture problem with respect to the
filament strength feature y(f)

s . Again, the EM technique is used
to estimate the parameters. Let µ(f)

i and σ(f)2
i denote the mean

and variance of y(f)
s for configuration i. The E step is

wsi =
p

(
y
(f)
s |µ(f)

i , σ
(f)
i

)
P (i|xs,xηs

)∑
i

p
(
y
(f)
s |µ(f)

i , σ
(f)
i

)
P (i|xs,xηs

)
(15)

and the M step is

µ
(f)
i =

∑
s
wsiy

(f)
s∑

s
wsi

(16)

3Although wsi can be any number in [0 1], here only the two values of 0 and
1 are allowed based on the provisional segmentation.
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Fig. 3. (a) Center site belongs to the background. (b) The center site is on the
tail of a filament.

σ
(f)2
i =

∑
s
wsi

(
y
(f)
s − µ(f)

i

)2

∑
s
wsi

(17)

P (i|u,v) =

∑
s∈Suv

wsi∑
i

∑
s∈Suv

wsi
(18)

where in (18) Suv = {s|xs = u,xηs
= v}. Considering that a

half-sided Gaussian function is involved in the mixture, µ(f)
0 is

simply set to zero at each iteration in the above EM procedures.
Here, the EM steps iterate along with the segmentation. At each
iteration, the class labels x are updated, and an E step followed
by an M step is performed for refining the parameters. Equation
(18) computes the prior conditioned on the class label configu-
rations in the defined neighborhood, and thus P (x(f)

s |xs,xηs
)

is obtained.
3) β and a: Typically, the MLL parameter β is assigned

a value based on experimentation. For example, Rignot and
Chellappa [23] reported that [1.0–1.6] is the best range for β in
their polarimetric SAR image segmentation. Yue [24] believes
that β could be set between 1 and 3 based on experiments on
SAR sea ice imagery. The difficulty of the problem is due to
the intractability of the normalizing constant of the distribution,
known as the partition function, that makes direct maximum-
likelihood (ML) estimation of β impossible. There are some
efforts that try to maximize an approximation of the likelihood
[20], [25] or use a Monte Carlo scheme [26] to avoid the
computation of the partition function. In this paper, β is simply
chosen to be 2. Some smaller values have been tested, but noise
appears at such levels.

The role of a is to put more weight on class label configu-
rations that are consistent with current estimate of filament flag
configurations, and suppress those that are not. Larger values of
a suggests greater power for detecting and preserving filaments
but may also weaken the ability of the model in suppressing
noisy results. For choosing the appropriate a, consider a special
cases in Fig. 3.

In this example, only one of the neighbors belongs to class A
(represented by black) and all other neighbors belong to class B
(represented by white). The filament flag of the black neighbor
is 1. This situation will generally happen near the two end
points of filaments. Suppose the filament strength and the class
label context tell us nothing about whether the center site is on
the tail of a filament or not, i.e., P (x(f)

s = 0|y(f)
s , xs,xηs

) =
P (x(f)

s = 1|y(f)
s , xs,xηs

) = 0.5, then the classification of the
site should not be influenced by the context model but only
depends on its gray level. Since P (x(f)

s |y(f)
s , xs,xηs

) is now

a constant and based on (8), (7) becomes

arg max
xs,x

(f)
s

p(ys|xs)P
(
xs|x(f)

s ,x(f)
ηs
,xηs

)
. (19)

Any bias imposed by the context model of P (xs|x(f)
s ,x(f)

ηs ,
xηs

) is not desirable. Therefore, while the nonfilament model
in (9) favors the configuration of Fig. 3(a) and the filament
model in (10) favors that of Fig. 3(b), their influences should be
equal in the amount so that the two configurations are equally
probable. By the nonfilament model, the context model energy
of Fig. 3(a) is β, and that of Fig. 3(b) is 7β. By the filament
model, the context model energy of Fig. 3(a) is 8aβ, and that of
Fig. 3(b) is 0. Therefore, the context model energy difference
between the two configurations is −6β using the nonfilament
model, and 8aβ using the filament model. Thus, a = 0.75.

In practice, depending on the image, we often want the
overall process to weight on one or the other of the two models
to emphasize on suppressing noise or detecting filaments. a is
thus not necessary to be 0.75 exactly, but can be smaller or
larger depending on the image characteristics.

D. Variable Weighting

In this paper, the simulated annealing (SA) [27] is adopted
as the optimization technique. During the iterative optimization
process, feature model parameters are gradually refined based
on (11)–(18). However, the influence of context model over
a beginning random class label configuration can possibly be
quite misleading for such a parameter estimation, producing
an unpredictable result. Therefore, following [11], a variable
weighting parameter (V-MLL) is introduced to adjust adap-
tively the relative importance of the feature model over the
context model during the segmentation process. The objective
function of (7) is changed to

arg max
xs,x

(f)
s

(
p(ys|xs)p

(
y(f)

s |x(f)
s

))α

P
(
x(f)

s |xs,xηs

)
P

(
xs|x(f)

s ,x(f)
ηs
,xηs

)
. (20)

At first, α is set to a large value so that the feature model dom-
inates and the spatial relationship information can be ignored.
As the segmentation process iterates, α is decreased to let the
context model play a more important role.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

For the ridge feature extraction, a Gaussian filter of variance
12 is used in computing the main principle curvature direction.
With the direction obtained, the original image is then smoothed
by a Gaussian filter of variance 3 along that direction and by a
filter of variance 12 normal to the direction. The ridge feature
is then computed based on the smoothed image.

Four methods are compared: clustering based on the
Gaussian mixture model (GMM), the MLL model with constant
weighting (C-MLL) [18], the MLL model with V-MLL [11],
and the proposed FPM. The SA technique [27] is used for all the
approaches except GMM, and the following annealing schedule
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is applied:

T (k) = T (0) ∗ 0.95k (21)

where k is the iteration number. Initial temperature T (0) is
always set to be 1. For the V-MLL α in V-MLL and FPM, the
same scheme as follows is used [11]:

α(k) = 80 ∗ 0.9k + 1. (22)

The parameter a of the FPM is adjusted around 0.75 for
different tested images. It has been found that the segmentation
results are similar for a moderate range of values of a around
0.75. Of the two kinds of images tested later in the experiments
(one synthetic and the other SAR sea ice), the synthetic one is
with heavier noise and a smaller value of 0.6 is applied. For
the SAR sea ice images, we simply choose a = 0.9 based on
experiments.

For quantitative evaluations of the results, two metrics are
used. The first is the overall accuracy (OA) which, as typically
defined, is the ratio of the number of correctly labeled pixels
over the total number of image sites. For situations where the
boundary and filament sites occupy only a small fraction of the
image, a second metric named boundary accuracy (BA) is used,
which is the ratio of the number of correctly labeled pixels
in the boundary region over the total number of sites in the
boundary region. Here, the boundary region is defined based on
the ground truth image to be the set of sites whose minimum
Euclidean distance to boundary sites (i.e., those that have at
least a neighbor belonging to a different class) is no more
than 2.

B. Segmentation of Synthetic Image

Fig. 4(a) is a synthetic “star” shape 523 × 501 image
corrupted by additive Gaussian noise, and Fig. 4(b) is the truth.
The image has two classes with mean gray levels of 128 and
178, respectively, and the same variance of 650.25. Fig. 4(c)–(f)
show, respectively, the results of segmentation using the GMM,
C-MLL, V-MLL, and the proposed model FPM. The result by
the GMM is unacceptable, while the other three approaches
are much more effective. This shows the importance of spatial
context to image segmentation. The C-MLL result in Fig. 4(d)
has noticeable errors inconsistent with the “star” shape, and
lags in classification accuracy to V-MLL in Fig. 4(e) and FPM
in Fig. 4(f). Compared to the C-MLL and V-MLL approaches,
the proposed FPM model generates visually improved results
with noticeably better defined shapes and longer tails. Although
the OA in Fig. 4(f) is only marginally better than in Fig. 4(e),
this is due to the fact that the filaments only occupy a very
small population of the image sites. By comparing the BA
percentage, the FPM is shown to have improved over the
V-MLL by 4%. The advantage of the proposed model over the
C-MLL and V-MLL models in preserving filaments is obvious
in the difference images shown in Fig. 4(g)–(i), where in
Fig. 4(i) erroneously labeled sites (white sites) are significantly
fewer in the tails. Fig.4 (j) gives the filament map obtained si-
multaneously with the segmentation. The black sites in this map
indicates the locations where the filament model is used instead
of the nonfilament MLL model. Validation of the Gaussian
model for the filament strength is investigated in Fig. 5. In the

Fig. 4. (a) Synthetic noisy “star” image; (b) Truth; Results: (c) GMM (OA:
77.8%, BA: 78.7%); (d) C-MLL (OA: 96.6%, BA: 84.0%); (e) V-MLL (OA:
98.1%, BA: 90.8%); (f) FPM (a = 0.6, OA: 99.0%, BA: 94.8%); (g) Difference
between C-MLL result and truth; (h) Difference between V-MLL result and
truth; (i) Difference between FPM result and truth; (j) The filament map.

graph, the distribution of the normalized y(f)
s is highly peaked

at the zero point and have a long tail toward 1. The GMM gives
a close approximation for the distribution.

C. Segmentation of SAR Sea-Ice Imagery

Fig. 6(a) is an image of Gulf of St. Lawrence acquired by
RADARSAT ScanSAR (C-band, HH, 100-m pixel spacing)
on February 19, 1997. This image has an bimodal histogram,
suggesting that the features of ice and water are quite separable.
However, existence of noise has led to a “spotty” result using
the GMM Fig. 6(b). In Fig. 6(c) and (d) incorporation of spatial
context by MLL gives an improved result, but at the same time
details of filaments are lost. The proposed model in Fig. 6(e)
performs the best. More cracks and longer tails can clearly
be seen, as indicated by the details shown in Fig. 6(f). Using
manual segmentations as the truth, the overall accuracies and
boundary accuracies are computed from the eight subregions
in Fig. 6(f), together as a whole, for quantitative evaluations.
These accuracies are reported in the caption for Fig. 6. The
FPM is shown to have significantly better performance, with
a BA 8.9% higher and an OA 3.1% higher than the second best
approach (V-MLL).
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Fig. 5. Obtained Gaussian models for filament strength for Fig. 4.

Fig. 6. (a) SAR image of Gulf of St. Lawrence on February 19, 1997 ac-
quired by RADARSAT ScanSAR (C-band, HH, 100-m pixel spacing); Results:
(b) GMM; (c) C-MLL; (d) V-MLL; (e) FPM (a = 0.9); (f) Detail comparison.
First row: original; second row: C-MLL (OA: 92.4%, BA: 78.0%); third row:
V-MLL (OA: 93.5%, BA: 81.4%); fourth row: FPM (OA: 96.6%, BA: 90.3%);
fifth row: manual segmentation (truth).

Fig. 7(a) is another RADARSAT image of the Gulf of
St. Lawrence acquired on February 20, 1998. This image is
well understood as it is used for training purposes at the CIS.
Excluding the land in the bottom, the image has three classes.
The dark region surrounding the land is water. The bright
region from the top left to the center of the image is gray
ice, and the rest is gray–white ice. This image has many long

Fig. 7. (a) SAR image of Gulf of St. Lawrence on February 20, 1998 ac-
quired by RADARSAT ScanSAR (C-band, HH, 100-m pixel spacing); Results:
(b) GMM (OA: 62.4%, BA: 47.2%); (c) C-MLL (OA: 83.0%, BA: 61.8%);
(d) V-MLL (OA: 91.9%, BA: 71.7%); (e) FPM (a = 0.9, OA: 92.0%,
BA: 75.3%); (f) Manual segmentation (truth).

narrow leads clearly visible in the gray ice region, and thus
is suitable for testing the proposed model. In Fig. 7(b), the
GMM model is able to identify the lead structure, but the
regions have tremendous errors. This motivates the proposed
method that can simultaneously capture the lead structure and
segment regions accurately. Compared to the C-MLL result in
Fig. 7(c) and V-MLL result in Fig. 7(d), the FPM approach
in Fig. 7(e) has preserved more narrow elongated segments.
The FPM has also connected some segments that are broken in
Fig. 7(c) and (d), forming long narrow leads. Quantitative
evaluations based on a manual segmentation is performed, and
also shows the advantages of the proposed FPM method. The
FPM has a BA 3.6% higher than the method with the second
highest accuracy (V-MLL).

V. SUMMARY AND FUTURE WORK

We have proposed a filament-preserving model capable of
preserving narrow linear features without losing the strength in
suppressing noisy configurations. Experiments have shown the
promise of this method in application of SAR sea-ice analysis.

Improvement of this paper may be achieved by integrat-
ing texture features and refining the gray level feature model
with Gamma distribution. It has also been noticed that while
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our method tries to alleviate the undersegmentation problem
specifically for filaments, it may suffer the oversegmentation
problems for some SAR sea ice imagery. It is well known
that multiscale-based methods can improve significantly the
oversegmentation problem, and therefore another future work
would be extending this model in a multiscale manner.
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